Home Science & Technology Japanese researcher used spider silk to spin a set of violin strings

Japanese researcher used spider silk to spin a set of violin strings

Shigeyoshi Osaki of Japan’s Nara Medical University has used thousands of strands of spider silk to spin a set of violin strings.

The strings are said to have a “soft and profound timbre” relative to traditional gut or steel strings.

That may arise from the way the strings are twisted, resulting in a “packing structure” that leaves practically no space between any of the strands.

The violin strings will be described in a forthcoming edition of the journal Physical Review Letters.

Shigeyoshi Osaki has been interested in the mechanical properties of spider silk for a number of years.


Shigeyoshi Osaki of Japan's Nara Medical University has used thousands of strands of spider silk to spin a set of violin strings

Shigeyoshi Osaki of Japan's Nara Medical University has used thousands of strands of spider silk to spin a set of violin strings

In particular, Dr. Shigeyoshi Osaki has studied the “dragline” silk that spiders dangle from, quantifying its strength in a 2007 paper in Polymer Journal.

Dr. Shigeyoshi Osaki has perfected methods of obtaining large quantities of this dragline silk from captive-bred spiders and has now turned his attention to the applications of the remarkable material.

“Bowed string instruments such as the violin have been the subject of many scientific studies,” Shigeyoshi Osaki writes.

“However, not all of the details have been clarified, as most players have been interested in the violin body rather than the properties of the bow or strings.”

Dr. Shigeyoshi Osaki used 300 female Nephila maculata spiders – one of the species of “golden orb-weavers” renowned for their complex webs – to provide the dragline silk.

For each string, Dr. Shigeyoshi Osaki twisted between 3,000 and 5,000 individual strands of silk in one direction to form a bundle. The strings were then prepared from three of these bundles twisted together in the opposite direction.

Dr. Shigeyoshi Osaki then set about measuring their tensile strength – a critical factor for violinists wishing to avoid breaking a string in the midst of a concerto.

The spider-silk strings withstood less tension before breaking than a traditional but rarely used gut string, but more than an aluminum-coated, nylon-core string.

A closer study using an electron microscope showed that, while the strings themselves were perfectly round, in cross-section the strands had been compressed into a range of different shapes that all fit snugly together, leaving no space between them.

Dr. Shigeyoshi Osaki suggests that it is this feature of the strings that lends them their strength and, crucially, their unique tone.

“Several professional violinists reported that spider strings… generated a preferable timbre, being able to create a new music,” Shigeyoshi Osaki wrote.

“The violin strings are a novel practical use for spider silk as a kind of high value-added product, and offer a distinctive type of timbre for both violin players and music lovers worldwide.”